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; An approximate model for the study of platoon formation on two-
{ ‘ lane highways is discussed in detail. The model assumes that the two-
' lane highway is divided in each traffic direction into alternating road
sections of fixed lengths. The passing in one type of section is unre-
stricted and the passing in the other one is prohibited. It is assumed
that there are slow and fast vehicles on the highway and that inputs fol-
low independent Poisson processes. The results include the distribution

of the number of vehicles in a platoon and the average speed of a typical
fast vehicle.
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ON PLATOON FORMATION ON TWO-LANE ROADS
by

Zeev Barzily
Michael Rubinovitch

1. Introduction and Summary

This communication studies a simplified model for platoon (bunch)

formation on two-lane two-way highways.

The behavior of vehicles on two-lane two-way highways is a very com-
plex process and several models have been proposed by different authors
under various simplified assumptions. Usually the objectives of such
studies are to derive the distribution function of the number of vehicles
in a platoon and to find the average speed of a fast test car moving in

a stream of slow vehicles.

The models for traffic flow on roads may be divided, according to
their method of study, into two groups, microscopic models and macroscopic
models. 1In the micro approach a detailed description of the behavior of
individual vehicles is the basis for the construction of the model. The
macro approach, on the other hand, studies the behavior of sizable groups

of vehicles without specifying the behavior of any single vehicle.

Several models have been proposed for traffic flow on two-lane
roads. Tanner [9] assumes that traffic in one direction is moving at a

constant speed v while traffic in the opposite direction moves at a
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constant speed V . Spacings between bunches are assumed to be exponen-
tially distributed. The purpose of this study is to determine the average
speed of a single vehicle having a free speed of u (u > v) and travel-
ing in the v stream. Miller [7] discussed a macro model for the deter-
mination of the average passing rate from bunches. He assumed exponential
spacings between platoons and that the platoons are in a state of equilib-
rium in the sense that the average rate at which vehicles join a bunch

equals the rate at which they leave it. Taylor, Miller, and Ogden [10]

compared numerical results of several bunching models using both experimental

and simulated bunch size data. Galin and Epstein [5] studied the steady-
state situation on a road in which passing is possible only in passing
points located at equal distances along the road. Models for traffic
flow in a no-passing zone are proposed by Cowan [2], Hodgson [6], and

Epstein, Galin, and Shlifer [4].

The present study is an extension of the models proposed by Galin
and Epstein [5], Cowan [2], Hodgson [6], and Epstein, Galin, and Shlifer [4].
We assume that the road consists of alternating free-passing zones and
no-passing zones in each traffic direction. The free-passing zones are
named Type I sections and the no-passing zones are named Type II sections.
1t is also assumed that all road sections of the same type have the same
length. What we in fact have is a sequence of no-passing zones of fixed

length separated by a sequence of free-passing zones of fixed length.

In reality the lengths of the Type I and Type Il sections are ran-
dom variables dependent on traffic in the opposite direction. However, we
assume that the Type T and Type II sections have constant lengths because
it enables us to analyze traffic in one direction independently of traffic
in the opposite direction. Even under this simplified assumption, the anal-
ysis is quite complex. We believe that the present model may give some
insight into the mechanism of platoon formation. Moreover, there are
situations in which this model may in fact provide an approximation to
the behavior of vehicles in a road. This will be the case when traffic
intensity is low and passing is frequently prohibited due to sight and

road conditions.
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A summary of the paper now follows. In Section 2 we give a detailed
description of our model and its underlying assumptions. We also derive
several properties which will provide the basis for the study of platoon
formation in Section 3. Section 4 contains a numerical example and

Section 5 is a discussion of the model.

2. The Model and Some Preliminary Results

Consider a two-lane two-way highway and assume that vehicles enter
and leave it only at its end points. The highway consists in each traffic {#
direction of alternating Type I and Type II sections. As traffic in ecne
direction is (assumed) independent of traffic in the opposite direction, we
will focus our attention on traffic moving in a traffic direction that will

be named "our" direction. Let 21 denote the length of a Type I section in

our direction, while 22 denotes the length of a Type II section.

Assume that there are two types of zero size vehicles moving in the

highway; slow vehicles have a free speed v, and fast vehicles have a

1

; free speed v, (v2 > vl) .  Input processes of slow and fast vehicles are

independent Poisson processes with arrival rate Al for the slow vehicles |

‘ and A2 for the fast vehicles. Regarding the movement of vehicles, we

shall assume the following. A slow vehicle always maintains its free

speed v1 . A fast vehicle moves at its free speed v except when it

2
comes up against a slow vehicle in a Type II section. When this happens
the fast vehicle slows down immediately and follows the slow one at a
zero distance up to the end of the section. At the end of the Type II
section it immediately passes the slow vehicle and resumes its free
speed v, -
é We assume that fast vehicles do not disturb one another. Hence,
the analysis of the movement of fast vehicles along the highway can be
carried out through analyzing the movement of a typical fast vehicle --

a "test vehicle." Let t=0 denote the time at which the test car arrives
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at the highway, and let {1n : n=1,2,...} be the interarrival times of

the slow vehicles which precede it. Thus, the slow vehicle closest to

the entrance arrives 'I'l time units prior to t=0 , the slow vehicles in

front of it arrives Tl + 12 time units prior to t=0 , etc. By assump-

tion and by the well-known properties of Poisson processes, it is clear

that r1,12.... are i.i.d. exponential random variables with mean AI

The fast test vehicle now starts its trip on the highway. The fol-
lowing are some fundamental observations regarding its movement and inter-

actions with other vehicles:

(a) Let Dm(u) y» (m=1,2,... ; u < Zl) denote the distance

between the test car and the closest slow vehicle ahead
of it when the test car is at a distance u from the
beginning of the mth Type I road section. Then Dm(u)

are i.i.d. exponential random variables, all with mean
vl/}\1

(b) Consider two fast vehicles, say No. 1 and No. 2, and sup-
pose No. 1 is the one that arrives first at our highway.
Suppose also that No. 1 is impeded by a slow vehicle
(henceforth Vehicle A) at the ith Type II section. Then
if No. 2 is impeded by A at the (i+j)th Type II section
(j > 1), then No. 1 and No. 2 will never be in the same
platoon.

We first establish (a). Let

Dn = Tnvl S 02120 s
n
8 = z P B SN

and denote by fn(') the probability density function of Sn . By defi-
nition, Dl(O) = Dl , and since Dn are independent and exponentially
distributed (parameter Allvl) it follows that fn(') is a gamma density

with parameters (n, Allvl) . The distance between the test car and the nth

preceding slow vehicle at t=0 is Sn ,» and when the test car is at a dis-

tance u (u < 1]) from the entrance, this distance reduces to
-l -

¢
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If the test car has already passed the anth slow vehicle,

Let Fm l(’) denote the distribution function (d.f.) of
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S; is negative.

D (u) ; then
m

Fl,u(x) = P[O =D u(l - Vl/VZ) < x]
+ nZZ P[én-l - u(l - Vl/VZ) R Sn - u(l - v1/v2) < x]
e e-(Allvl)u(l - Vl/VZ) . e—(Allvl)[u(l - vllvz) + x]
e Rl vl/vz)
+ Z I fn(y)P[u(l - v1/v2) -y < Dn < u(l - v1/v2)
n=1 y=0
et p-(lllvl)y
Now set
k= m:n{n B 11(1- vl/vz) 2RO,
and obtain
i ol 01(21) < 22(1 - v1/v2)
DZ(O) =
D](ll) - 22(1 - v]/vz) : if Dl(ll) >‘22(1 - vl/vz)

From this we conclude that D2(0) is an exponential random variable (r.v.)

due to the exponentiality of Tk+1

property of this distribution. Thus starting with D](O) as exponential
(with parameter Al/vl) we find that Dl(u) has the same distribution for

u < &, , which in turn leads to DZ(O) following also the same exponential

1

distribution. By induction, it follows then that Dm(u) y (0 <ucx< 21) is

exponential with parameter Al/v1 for any m = 1,2,3,...

and Dl(ll) , and the lack of memory

-~ -
5
=S

-y + x]dy

st i
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Now we establish (b). Ilet in denote the length of time Vehicle

No. k, k=1,2 , maintains a speed vn , n=1,2 , for the mth time after

passing Vehicle A. The values of X;n are determined by Vi v2, R], 22,
and the distances between A and the slow vehicles preceding it. None of

the values of these parameters changes, hence,
X, =X z n=1,2 ; m=1,2,3,.-.

Now we assume that No. 1 passes A at time t , and therefore it passes

the 2th impeding vehicle at

: ) | 0 1
e ) Koy ¥ X -
m=1 m=1
No. 2 passes the fth impeding vehicle at
2.+ 2 , 2 , L. +2 ') '3
be & ghy ek ) P TN S ) % ) e
2 - ool & m2 v S il 2o L
1 m=1 m=1 1 m=1 m=1

consequently, No. 1 and No. 2 will never simultaneously pass any slow vehi-

cle, which means that they will never move in the same platoon. This proves

Statement (b).

From here we can make two further conclusions essential to the analy-

sis of the next section:

(¢) Vehicle No. 2 will never move in a platoon with No. 1 if
it passes Vehicle A later than the end of the (i+l1)st
Type II section.

(d) 1If the distance betwecen No. 1 and No. 2 exceeds (ll+17) X

(.l/vl - l/vz) , then No. | and No. 2 will never move in

the same platoon.

To see why (c) is true, imagine that there is a (fictitious) vehicle

in a platoon which is moving after A in the (i+l1)st Type II section. Then

by (a) the fictitious vehicle will never come up against No. 1. Hence,
since fast vehicles never pass one another, then fast vehicles moving behind !

the fictitious one will never come up against No. 1. Assertion (d) is now

- B =
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obvious since No. 2 will be unable to pass a slow vehicle, which impedes
No. 1 at a Type 11 section before the beginning of the next consecutive

Type 11 section.

3. ‘The Platoou Formation

We will now determine the distribution function of the number of
fast vehicles in platoons which arrive at the ends of Type II sections.
A platoon is formed when several fast vehicles together are impeded by
a slow vehicle. When such a platoon arrives at the end of the Type II
section in which it is formed. the fast vehicles pass the slow leader,
continue moving as a fast platoon, and the zero relative distances among
the constituent fast vehicles never change. The platoon may join (or be
joined by) other platoons later. 1In the discussion here we dov not differ-

entiate between platoons moving at their free speed (v2) and platoons

moving at a speed v, (although this separation may be added).
We begin with the deterwination of the distribution of the time

spent in a Type 1T section. From (a) of Section 2 we deduce that the

times spent by fast vehicles in Type Il sections are i.i.d. random vari-

ables. Let T denote the length of a time period spent by a fast vehicle

in the mth Type 11 section, and let FT(') denote the d.f. of T . Clearly,

T = max{ﬁn/v2 g (22 - Dm(lz))/v]} "

hence
0 5 t < Qz/v2
A (L, /v, - t)
= i)
F_(t = ) )
() e 3 &Z/VZ»i £ < kz/v1
<
1 - QZ/V] t
and

—Xlﬁz(llv] - l/vz)
e

= (3.1)
F(dt) = (Rylv, = t)

A'c dt QZ/V2 E LtV

A
T

A
=
~
<

0 " otherwise.

e
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Using a different approach, FT(t) was calculated previously in [4].

Now we define:

a Type A interval of order m as a time interval (t, t+x] satis-

fying (i) all fast vehicles which arrive at the highway in this interval
are uvnimpeded in the first m Type LI sections, and (ii) the fast vehicles
which arrive at the highway at t- (an instant before t ) or at (t+x)+
(an instant after ¢t ) are impeded in at least one of the first m Type

11 sections; and

a Type B interval of order m as a time interval (t, t+x] satis-
fying (i) the fast vehicles which arrive at the highway in (t, t+x] form
a platoon while arriving at the end of the mth Type I1 section, and (ii)
vehicles that do not arrive at the highway in this interval do not move in

this platoon at that point.

Since the arrivals of fast vehicles at the highway are assumed independent
and Poisson, one can calculate the distribution runction of the number of
fast vehicles in a platoon if the distribution function of the Type B in-

tervals is known. We therefore begin with the determination of this dis-

tribution.

We notice that the Type A and Type B intervals of order m (formed)

in any time interval (tl, tzl constitute a partition of this interval.

Furthermore, this partition is a fixed function of Q], QZ’ vy v, and of

the arrivals at the highway of slow vehicles in (t] - m(21+92)(1/v1 - 1/v2),
tz] . (The subtraction of m(QJ+$L2)(l/v1 - l/vz) results from the fact that
while moving in a stretch of road of length m(11+12) , a fast vehicle may

pass slow vehicles which arrived at the beginning of this section no earlier

than m(Ql+E2)(l/v] - l/vz) ahead of it.) Since the slow vehicles arrive

according to a Poisson process and since 2]. 12, v]. and v2 are constants,

then the partition is a stationary process. Moreover, the Type A and Type B

intervals in (t]. t?I are not independent due to the cyclical effect caused

it i i
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by the entrance of any given slow vehicle to consecutive Type II sections

cvery fixed time period -- (!L]+9.?)/vl . We will determine therefore the

marginal density of the Type B intervals ol order m .

To determine the marginal density of a Type B interval, we calculate
S(u,m) , the probability that two fast vehicles, arriving at the highway u
unit of time apart, move in one platoon at the end of the mth Type II section.

Let T1 denote the time spent by the leading fast vehicle in the jth Type II
section. Denote by Uj the interarrival time of these fast vehicles at the

end of the jth Type II section, and define Uy =u . Let FU T (*,*) and
1 |

GU,T,
3 J
j > 1 , respectively. While calculating S(u,m) the following [(3.2) -

(*,*) be the joint distribution functions of (Ul,Tl) and (Uj’Tj) 5

(3.5)] must be taken into account:

S(u,m) = P[U =0 | U,=ul (3.2)

Uk = 0 implies that Ui =0 for all i > k . (3.3)

Let DSj denote the distance between the second fast vehicle and the first

slow vehicle preceding it when the fast vehicle is at the entrance of the

jth Type IT section, and let

H = 1/vl - 1/v2 s
Then
= = <
(Um 0 and Tj 22/v2 for j < m) implies that
+ (3.4)
< + -
(Uj (21 QZ)H and DSj+l > v1[Uj llH] ) .
where [a]+ is the positive part of a . The condition on Uj results

from (d) of Section 2 and the information on DSj+l is due to the leading

fast vehicle having been unimpeded in the jth Type II section. Finally,

= > i i < . .
(Um 0 and Tj 9,2/v2 for j < m) implies that Uj 21H (3.5)

e e e T O
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Unless (3.5) holds, No. 2 is not able to pass the slow vehicle that impeded
No. 1 at the jth Type TII section before the beginning of the (j+1)st Type
I1 section. From (a) of Section 2 and Equations (3.4) and (3.5), we

deduce that GU T (*,*) , j=2,3,... are identical. Furthermore, we
33
realize that the reason for the difference between FU T (*,*) and
11

Gy T (*,*) 1is that when Tj = 2.2/v2 » J > 1, we have prior information
i3]

on DSj+1 .
The probability S(u,1) has a simple expression (see Equation (A.1)
in the appendix). The determination of S(u,m) , m > 2 , is carried out as

follows. Define

£, t,
G @b = I J 6 o e [ o sn L, T, = )
t=t1 u=0 m1’ "m1
* BiG =0 | U =u, ol 2.3, (3.6)
and
€ %
QCuy_qats g) = { { dGy o (ug.t | v ZUgope Tyop ™51 Qg (uye8)
t—t.l ui—O T3
j=2,3,...,m2 ., (3.7)
Hence
v
Q (u,m) = S(u,m) = J { dFy o Cugat | Up=wQ, (uy,t) (3.8)
t=t, u =0 11
il
where

ty = (21+QZ)(1/Vl - 1/v2) v t, = lzlv2 , and t, = Qz/v1 . (3.9)

The conditional distributions of G and F and the probability

= t] are derived in the appendix.

P[Um=0 | Um—l ere iy 1m—1
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Now we determine the distribution function of a Type B interval.
Let A(m) denote the event that the first of the two fast vehicles is
impeded in at least one of the first m Type II sections, and let
B(u,m) denote the event that the time from a random arrival to the end

of the first Type B interval of order m is longer than u . Clearly,

S(u,m) = P[A(m) N B(u,m)] = P[A(m)]P[B(u,m) | A(m)] , (3.10)

1 - P[A(m)] = P['r1 = 22/v2, 'r2 = 21/"2’ Tm = 2,2/v2] <

and due to the independence of T i=l,...,m , one obtains

i ]

e —mllle

1 - plam] = (PIT = 2,/v,))" = e (3.11)
Now let X(m) denote a Type B interval of order m , let X'(m)

denote a Type B interval of order m containing a random arrival, and let

Fx(m)(') and FX'(m)(.) denote the respective distributions. It is known

that

xdFX(m)(x)

E[X(m)] T 0 5_ X i (9'1+22)H

(x) = (3.12)

dFX'(m)
0 : otherwise;
hence, because the allocation of a random point is uniformly distributed in

X'(m) , we obtain

to X-u Xdegm)(x)
P[B(u,m) | A(m)] = iu—;— EX(m] (3.13)

X
We insert (3.13) and (3.11) into (3.10) and get

-mA, ¢ H t
1w 172 0

S(uym) = —Fremsr—| J xdFp (0 - u(l-Fx(m)(u)) : (3.14)

X=u

Differentiating (3.14) with respect to u and denoting

S'(u,m) = é% S(u,m)

yields

e
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2] (
e mAllZH
* = [1-F 2 ’
$' (u,m) ETXm) ] | X(m)(u)] (3.15)
Using the fact that Fx(m)(O) =0, we get from (3.15) that
o p-mAIQZH
E[X(m) | = TSea) (3.16)
and
S' (u,m)
= 2 lu,m)
Fx(m)(u) sTo.m (3.17)

The expression S'(u,m) is simple for m=1 and becomes more messy as

m 1increases.

We are now able to calculate the probability function of the number
of fast vehicles in a platoon. Let N(m) denote the number of fast ve-
hicles in a platoon arriving at the end of the mth Type II section, let

pN(m)(') denote its probability function, and let C(m) denote the event

that the platoon has been impeded in at least one of the first m Type II

sections. Clearly,

p (n) = P[C(m)]P[N(m)=n | C(m)] + P[C(m)]P[N(m)=n | C(m)] ,

N(m)

where C(m) is the complement of C(m) . The arrival of fast vehicles at

the highway is Poisson, hence

P[N(m)=n | C(m)] = (3.18)
0, otherwise.

Denote by q the probability that n fast vehicles arrive at a Type
N(m)

B interval.

% O,0" =Ax
qN(m)(n) =/ o de(m)(x) $ (3.19)

0
and therefore
ay m)(n)

P[N(m)=n | C(m)] = S qN(m)(aj ¢ AR e Tiana » (3.20)

o

;
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The platoons that are impeded in at least one of the m first Type 1I

sections arrive at the end of the mth Type I1 section at a rate of

—mAlZZH)
Az(l - e / E[N(m) I C(m)] ; the platoons that are not impeded arrive
-mlllzﬂ
at the same point with rate Xze s hence
-mA, L. H
(1 - e 12 )
P[C(m)] = E(N(m) | C(m)] ] (3.21)

-mA, 2. H
(1 SalE )+ e'“"‘lgz“
E[N(m) | C(m)]

We calculate the conditional expectation of N(m) using (3.19) and (3.16),
and the result we insert into (3.21) to obtain

—lelzﬂ

P[C(m)] =

(3.22)
—(1 = ety (0))8'(0,m) + e

Combining (3.22), (3.20), (3.19), (3.18), (3.17), (3.6), (3.7), and
(3.8) yields the desired probability function, from which we obtain

. AZE[x(m)]
E[N(m)] = ; .
( -mklzzﬂ) 0 -Azx -mkllzﬂ
1-e 1-f e de(m)(x) + X,E[X(m)Je
0 (3.23)
The expectation of N(m) can be bounded without calculating dFX(m)(.) &
For this we use Jensen's inequality to get
t
0 -Ax -XZEIX(m)l
é e dFX(m)(x) > e . (3.24)
and as
-Azx 1 - e_AZtO
e S = == for any 0 < x <t _,
- t )
0
we obtain
o -2, R
. de(m)(x) SR ————E—————-EIX(m)] v (3.25)
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Using (3.24) and (3.25) we get
AZE[X(m)]

i Ll i Bl (““‘:;,;x;gu)( W EE@I) o g < BN

il ~e il = e + AZE[x(m)]e

A2
s i Y - = EZIN(m)] 2
-m)\lfl,,)H g 20 —m)\]QZH
e
t, 2

It is obvious that E[N(m)] is nondecreasing, hence its upper and lower
bounds, EU[N(m)] and FEL[N(m)] , respectively, can be established from
EllN(m)] and E2[N(m)] as follows:

EU[N(m)] max{Ez[N(m)], EU[N(m-1)]} ,
and

EL[N(m) ]

max{El[N(m)], EL[N(m-1)]} .

The expected number of fast vehicles in a platoon behind a slow
vehicle can be calculated without applying the procedure outlined above.
Let J(2) denote the number of fast vehicles in a platoon moving behind

a slow vehicle at a distance £ from the entrance, and let rl(l) be the

probability that a fast vehicle is traveling at a speed v at that point.

1
We now show that

>
N

E[J(Q)] = 3 rl(l) . (3.26)

(—

To prove (3.26), suppose we observe the arrival process of vehicles at the
point located at a distance £ from the entrance. Let t denote the

length of the observation period and let Jl(t,l) and Jz(t.l) denote

the number of slow and fast vehicles, respectively, which arrive at that

point in the time interval considered. Denote by Y, , i=1,2,...,J1(t,2) 3

i
the number of fast vehicles in the platoon behind the ith slow vehicle.

Using the strong law of large numbers, one may obtain

- 14 =
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, J](i.l)
. ')'1 B
: i= il
lim I . D E[J(R)] . (3.27)
Lo 1
The left-hand side of (3.27) can be rewritten as
| Jl(t,l) Jl(t,l)
3 o o
: . T SRR VIR 2 -
proo J7 (€:2) txo Jp(£52) £ 3, (€,8) jd
4 Jl(t,l) 1
".’.0~
% 121 L 3,(t,0) : )
e = lim ———— 1lim ——— 1lim ———— . (3.28
-} Bind Jz(t,l) o t kit Jl(t.l)
4 Using the strong law of large numbers for the three series in (3.28) yields
4 the desired result. The probability rl(l) is obtained from (3.1) and is
given by
: 3
0 P |y A [W](QI'HLZ) < 21
i -2
r1(9') g -klx(llvl - 1/v2) .
1-ce s, iIf O0<x= 28 [E;;I;](11+12) - 21 < QZ > 1

(3.29)

where [a] is the biggest integer which is equal to or smaller than a .

4. Numerical Examples

We calculate here E[X(1)] , E[X(2)] , E[N(1)] , and the upper and
lower bounds of E[N(1)] and FE[N(2)] . Using the procedure outlined in

the previous section, we obtain

& e-xlzzn
E[X(1)] = — 7 e
1
& e-lezzu
Rixe2)] = 5 R A
“Epoy g 1O R4, 13
b 3 1 2 M®

- 15 -
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and

BIN()] = 5=
v)‘_l_ 2

L
P R "_“ R ""7'—.—"'”"—_ '—‘-q"’- T 9
‘ (l : ()\'+12)92h) g Alv .H
)\1+k2
(note, E[X(1)] < E[X(2)] ). The following are the numerical values

assumed: v1 = 60Km/h Mg ™ 80Km/h s )\2 = 225 vehicles per hour, and

1, =0, =1.0 Km (see graphs).

0.230 1
0.223 4
{ 0.200 1
-
-]
Z0.475 |
3
L]
go.nso 1

" o.125 |

0.100 v v s v v - A (VEHICLES /MINUTE)
2 3 4 s 6 1 &8 :

F1G.1: EXPECTED LENGTH OF TYPE B SECTION AS A FUNCTION
OF ARRIVAL RATE OF SLOW VEHICLES.

2.25 1 i
Eun2)
2901 i
u EunGg) ]
21.75 4
3
'1.50
w' =4
2 |
F1.28 e(n )
EL[N(N) @ EL [N(21) |
1.00 y — v v——p A(VEHICLES/MINUTE )
T T 8 :

v v |

I 4 ; 1 6. 7 8 |

FIG. 2: EXPECTED LENGTH OF A PLATOON AS A FUNCTION OF f
THE ARRIVAL RATE OF THE SLOW VEMICLES.

]

60. 1

~
e

~
L3

~
N

~
«

AVERAGE SPEED - KM/HR.
~ ~
> *

-
-

- v ~ v v A {VENICLES/MINUTE)
L & 3 4 85 ¢ 1 &

FIG.3: THE AVERAGE SPEED OF A FAST VEMICLE A.S A FUNCTION
OF THE ARRIVAL RATE OF THE SLOW VEMICLE.
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5. Discussion

This study discusses the platoon formation in a two-lane two-way
highway under low to moderate traffic intensity, i.e.. up to 4000 vehicles
per day in each traffic direction. Under this traffic load, it is reason-
able to assume Poisson arrivals of vehicles at the highway (see Taylor et
al. [10] and Breiman [1]). As for the assumptions on the sizes of the
vehicles, distances between vehicles in platoons, and the passing mechanism,
none of them seems to be too restrictive under this traffic intensity. We
believe that the most restrictive assumption here is that the highway is
divided into Type 1 and Type II sections having constant lengths. Actually,
it would have been more realistic to assume that the lengths of these sec-
tions are random variables, since they depend on sight and road conditions
and on traffic in the opposing direction. Nevertheless, we preferred this
assumption because it enabled us to analyze the movements of vehicles in one
lane independently of the traffic in the other lane, and consequently to study
the process of platoon formation, a difficult and complex process under any

set of reasonable assumptions.

We note that the lengths of Type I and Type II road sections may be
determined as functions of the traffic in the opposite lane according to
the following procedure. Let Y denote the interarrival times of consecu-

tive vehicles at the entrance of the opposite lane, let FY(') be the dis-
tribution of Y , and let d denote the minimal interarrival time which
enables safe passing. Hence,
2 = > -
L = (B0d] - d)v, ,

and £ satisfies

2
d
2ylv, = x=f (y + Rzlvz)dFY(y) "
which yields

d

é ydFy (y)

N e V)
2 1=PRA8 72
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Since platoon formation increases the gaps between consecutive platoons, we

may actually assign to ﬁ] a larger value and to 22 a smaller value than

the ones calculated from the expression above.

We would also like to point out that even though the result that the

length of a Type B section is bounded from above by (21+22)H , and conse-
quently the expected length of the platoon is bounded by A2(21+£2)H is

derived under the assumption that 21 and 22 are constants, we expect

that under more general assumptions it can be shown that the expected length

of a platoon is bounded by an equivalent expression.

Our final remark is in regard to three-lane highways, which are not
too common. For such highways the present model may provide a very good
fit if the center lane is assigned alternately to one of the traffic

directions as a passing lanc.

« 18 =
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APPENDIX
We calculate here some distributions needed for the evaluation of S(u,m) . Let lj denote
the time spent by No. 2 at the {th Type II section, and let M, (t) be the number of slow vehicles which

i
arrive at the jth Type II section in the time interval which begins when No. 1 enters the Type II section

and ends t- units of time later. To simplify the notations define 1‘0 = 0 . Clearly,

P[U =0 | U pmue T, y=t] = PIM_(0)=0, T_> L,/v, + u]
- ?[Hu(u)-Ol P[T- 2 lz/vz + u)

1 . 1f u=0

-\,u =X, (2, H-u)
el(l-e.l2 ) » if w=l and u<l2H

or u<fH and t-l.zlvz

1
or u<H -in{ll.lz) and t > l.zlvz

-\ L H =A, (L H-u)
.“(1-.12 ) . f LH<u<LH and €t 2,/v,

|

[} ,» otherwise. (A.1)

For the evaluation of F we use the relation
U =u + (R,-T c
y * Uga BTy

Hence,
w) = - - - T < -
l"ul.tl(u‘.! | U0 ) P[U‘ < u‘. 'l'x <t l U0 ul P[R‘ < u‘ u + Tl' 1 t l Uo ul

t Ui
LR /i dP_ (R <r, T <x | Us=u] (A.2)
n--l‘zlv2 r-m:(lzlvz. t-u} "X % 1 0

When u > lZH » then Tl and Rl are i.1.d. distributed according to (3.1). If u < ¢ H , then the

2

distribution of Tl is as before, but here T‘ and Rl are not independent and the calculation of
F 1s based on the fact that Hl(u) is a Poisson rundom variable with parameter Xlu . After evalua-

tion of F one can derive dF , which yields, in the case u < UH :

2
d?u'.l.l(ul,t | Up=w)
“Au =ALH
e 1 e 172 ¥ ul.u. t = l.z/vz
=22, LH A (u,-u)
172 ) Sl ¢ -
e Xle dul ’ lzll LN <u+ "2"' t "2/"2
=22 (2,/v,) A (2t 4u -u)
2 ) Bl i | 1 ) s | -
AL e e du,dt ¥ '.2/\7l sty < minfu + '-zlvl ts "l“) v
.< uy Fut /v, -t l.z/v2 <t tlv
=2 (L, /v,) A (2t+u -u) =2 (2, /v, + - u)
2 174 "} 1 1 ) Rl s | 1
Al e e duxdt + Xlo de l.zlvz <t <« "2,"2 +u,
“1"‘"’2"’2"( "1"
“Au =A (R /v, = t)
\11 SRR TR A dt » w0, Lyfvg +uce g '.z/\!1
0 , othervise. (A.3)




o g

T-350

In the casc u > le » then
dFu'T](ul.t | Uomw) =

~2A 2. H
172 ~ ”
e vouu, ).2/v2

-lelzﬂ ll(ul~u) E
e A e du, v U<y Sut LH, e lzlvz.

lzlvz <t < lzlv1

2 -le(lzlvl) ll(Ztﬁll-u)
-< A e e du, dt » u-LHZ u, < lin(u+12H. llH).
o ) uliu+lzlv2—t
A: t-ZAl(iz/vl) ¢)1(2l+ul-u)du‘d. ; xl e-lePZH eA'(u-ul)dt i gzlvz crx lz/v1.
\ ul'u#lzlvz-t
0 2 , otherwise. (A.4)

As for the evaluation of G , from (3.5) and (3.6) wec deduce that for any § >2:

(1) When Tj-l > lzlv2 and uj_] < llll » or when T.‘I - lzlvz and uj-l < llll . then O©=F .

(11)  When Tj-l > l.z/vz and "j—l > llu » then No. 2 will never move with No. 1 in the some

platoon. Here we define dG=0 .

(111) When 1"_1 -. ﬂ.zlv2 and uj_x > ll" s+ then Hj(lll-l) is a Poisson random variable with

parameter ) lll-l and

1
PIMI(U) 1) - M (L) = 0) = 1.
Here we have

1,5 Loy ymog e Ty tyfvp)
i I' /lzlv‘ - (",1-1"1") :
5 dP. R, €2, T. €10 %0, X SLTG) s (A.5)

x-!.zlv2 r - mx(lzlvz, t-uj_l) Xy = 1= -1 73-1° 31 272 " :

1f ",1" < UJ_1 < l.zll ,» then l’ and 'l'J are not independent and (A.5) yields




dCUJTJ(uj.tJ | Uy Uy Ty 1"/vy)

-A (2 42.)H
Y g
e TR WA

- Ym'w‘w:—'v?"'_"‘ e T "‘"F"E REae . dadh

-2 2. H A [ 4500 - u,)
12 L 1 12 3

e 1 . 12H < uj < (EI+EZ)H, tj - lzlv2
A /v, - t) =M (/v -y, -, +5H)
2 et g e gt Rt ey .
Xl e e dujdtj " lz/v2 < tj < lzlvl. i
2 l.z/vl - tj < uj < lln + "2/"1 - ‘j'
uy ¢ Yy + lz/v2 -t
4 ) DA A (/v - t)
Al e ! e Lie 2] ] dt
A (L /v, ~t,) X (L /v, ~u, -t + LH
2 ) iy R ¢ 3 2] 3 J 1
+ Xl ¢ e dujdtj 4 lzlv2 < tj < 12/v2 A gy
uj - uj-l + lzlv2 -t
A RH =) (0 /v, - t)
i i | 152 1 3 i
; Xl e e dt, G “j-l + (iz/vz) < tj < 12/0, uy 0
1 0 : , otherwise. (A.6)
? 1f Hmax(lz.ll) < Uj-l < (L4201 , then RJ and Tj are independent, and (A.5) yields
| T R N S L)
i
2 LH -\ -2
| { e ' 1‘"]-1 i u,~u t, =L /v
9 sl Rl By = R0V, |
4
| A LH A [(R 42 M - u, ]
b A 172 ) St B 3 - =
t’ 1@ e clu-1 O < “j<< (2, +2,)8, ‘J L,/v,
‘ SA (R /v, - e) =M (R, /v, - u, - t, +LH)
2 Sl Sy a7 165 Uil il e LS
A
- 1€ e dn,d:j . "z/"z < :j < '2/"1'
8
: ¥ { - vy + r,z/v2 - :J < uy < "1“ + tz/v1 -t
¥ -
F uy ¢ vyt L,/v, ty
- =\ 2 - - -
: - 1(( l4lz)ll u’_ll i Xl(lz/v1 t’)dc X
: ; :
S .
“A (R, /v, = t)) =X (L, /v, = u, = t, + L H)
3 ShyiigiVy =ity S AT s
Al e - -
r 1 e dujdt’ ¥ lzlvz < tj < lzlvl. uj "j-l + ﬂ.zlvz tj
! 0 » othervise. (A.7)
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